Jan 5, 2002

Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation

Keith LurieWolfgang Voelckel


This study evaluated the potential for an inspiratory impedance threshold valve (ITV) to improve 24-hour survival and neurological function in a pig model of cardiac arrest. Using a randomized, prospective, and blinded design, we compared the effects of a sham versus active ITV on 24-hour survival and neurological function. After 6 minutes of ventricular fibrillation (VF), followed by 6 minutes of cardiopulmonary resuscitation (CPR) with either a sham or an active valve, anesthetized pigs received 3 sequential 200-J shocks. If VF persisted, they received epinephrine (0.045 mg/kg), 90 seconds of CPR, and 3 more 200-J shocks. A total of 11 of 20 pigs (55%) in the sham versus 17 of 20 (85%) in the active valve group survived for 24 hours (P<0.05). Neurological scores were significantly higher with the active valve; the cerebral performance score (1=normal, 5=brain death) was 2.2+/-0.2 with the sham ITV versus 1.4+/-0.2 with the active valve (P<0.05). A total of 1 of 11 in the sham versus 12 of 17 in the active valve group had completely normal neurological function (P<0.05). Peak end-tidal CO2 (PETCO2) values were significantly higher with the active valve (20.4+/-1.0) than the sham (16.8+/-1.5) (P<0.05). PETCO2 >18 mm Hg correlat...Continue Reading

Mentioned in this Paper

Coronary Circulation
Ventricular Fibrillation
Salicylhydroxamic acid
Electric Impedance
Systolic Blood Pressure Measurement
Basic Cardiac Life Support
Brain Death

Related Feeds


Arrhythmias are abnormalities in heart rhythms, which can be either too fast or too slow. They can result from abnormalities of the initiation of an impulse or impulse conduction or a combination of both. Here is the latest research on arrhythmias.

Cardiology Journals

Discover the latest cardiology research in this collection of the top cardiology journals.