Use of directed acyclic graphs (DAGs) in applied health research: review and recommendations

MedRxiv : the Preprint Server for Health Sciences
Peter WG TennantGeorge Th Ellison


BACKGROUND: Directed acyclic graphs (DAGs) are an increasingly popular approach for identifying confounding variables that require adjustment when estimating causal effects. This review examined the use of DAGs in applied health research to inform recommendations for improving their transparency and utility in future research. METHODS: Original health research articles published during 1999-2017 mentioning "directed acyclic graphs" or similar or citing DAGitty were identified from Scopus, Web of Science, Medline, and Embase. Data were extracted on the reporting of: estimands, DAGs, and adjustment sets, alongside the characteristics of each article's largest DAG. RESULTS: A total of 234 articles were identified that reported using DAGs. A fifth (n=48, 21%) reported their target estimand(s) and half (n=115, 48%) reported the adjustment set(s) implied by their DAG(s). Two-thirds of the articles (n=144, 62%) made at least one DAG available. Diagrams varied in size but averaged 12 nodes (IQR: 9-16, range: 3-28) and 29 arcs (IQR: 19-42, range: 3-99). The median saturation (i.e. percentage of total possible arcs) was 46% (IQR: 31-67, range: 12-100). 37% (n=53) of the DAGs included unobserved variables, 17% (n=25) included super-nodes ...Continue Reading

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

Journal of Epidemiology
Etsuji SuzukiEiji Yamamoto
Proceedings of the National Academy of Sciences of the United States of America
David Fisman, Ashleigh Tuite
Journal of Dental Research
A A AkinkugbeC Poole
Etsuji SuzukiToshihide Tsuda
© 2021 Meta ULC. All rights reserved