Jul 25, 2018

Use of RAPTR-SV to Identify SVs from Read Pairing and Split Read Signatures

Methods in Molecular Biology
Derek M Bickhart

Abstract

High-throughput short read sequencing technologies are still the leading cost-effective means of assessing variation in individual samples. Unfortunately, while such technologies are eminently capable of detecting single nucleotide polymorphisms (SNP) and small insertions and deletions, the detection of large copy number variants (CNV) with these technologies is prone to numerous false positives. CNV detection tools that incorporate multiple variant signals and exclude regions of systemic bias in the genome tend to reduce the probability of false positive calls and therefore represent the best means of ascertaining true CNV regions. To this end, we provide instructions and details on the use of the RAPTR-SV CNV detection pipeline, which is a tool that incorporates read-pair and split-read signals to identify high confidence CNV regions in a sequenced sample. By combining two different structural variant (SV) signals in variant calling, RAPTR-SV enables the easy filtration of artifact CNV calls from large datasets.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Filtration
DNA Copy Number Changes
Genome
Synaptic Vesicles
Gene Deletion
Computer Programs and Programming
Sequencing
Migraine Disorders
Sequence Determinations, DNA
CNV Protocol

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.