DOI: 10.1101/499244Dec 17, 2018Paper

Using deep maxout neural networks to improve the accuracy of function prediction from protein interaction networks

BioRxiv : the Preprint Server for Biology
Cen WanDavid T. Jones

Abstract

Protein-protein interaction network data provides valuable information that infers direct links between genes and their biological roles. This information brings a fundamental hypothesis for protein function prediction that interacting proteins tend to have similar functions. With the help of recently-developed network embedding feature generation methods and deep maxout neural networks, it is possible to extract functional representations that encode direct links between protein-protein interactions information and protein function. Our novel method, STRING2GO, successfully adopts deep maxout neural networks to learn functional representations simultaneously encoding both protein-protein interactions and functional predictive information. The experimental results show that STRING2GO outperforms other network embedding-based prediction methods and one benchmark method adopted in a recent large scale protein function prediction competition.

Related Concepts

Genes
Biological Neural Networks
Protein-Protein Interaction
Protein Function
Trunk of Deep Temporal Nerve

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.