Jan 18, 2020

Using Synthetic Training Data for Deep Learning-Based GBM Segmentation

Conference Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Lydia LindnerJan Egger

Abstract

In this work, fully automatic binary segmentation of GBMs (glioblastoma multiforme) in 2D magnetic resonance images is presented using a convolutional neural network trained exclusively on synthetic data. The precise segmentation of brain tumors is one of the most complex and challenging tasks in clinical practice and is usually done manually by radiologists or physicians. However, manual delineations are time-consuming, subjective and in general not reproducible. Hence, more advanced automated segmentation techniques are in great demand. After deep learning methods already successfully demonstrated their practical usefulness in other domains, they are now also attracting increasing interest in the field of medical image processing. Using fully convolutional neural networks for medical image segmentation provides considerable advantages, as it is a reliable, fast and objective technique. In the medical domain, however, only a very limited amount of data is available in the majority of cases, due to privacy issues among other things. Nevertheless, a sufficiently large training data set with ground truth annotations is required to successfully train a deep segmentation network. Therefore, a semi-automatic method for generating sy...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

2-Dimensional
Brain Neoplasms
Gene Annotation
Research Methodology
Glioblastoma
Evaluation
Magnetic Resonance Imaging
Physicians
radiologist
Glioblastoma Multiforme

Related Feeds

Brain-Computer Interface

A brain-computer interface, also known as a brain-machine interface, is a bi-directional communication pathway between an external device and a wired brain. Here is the latest research on this topic.