Jun 1, 1988

Usual clinical dose of acetazolamide does not alter cerebral blood flow velocity

Respiration Physiology
S Y HuangJ T Reeves


Prior reports indicate that acetazolamide, an inhibitor of carbonic anhydrase, in moderate doses reduces symptoms of acute mountain sickness, and in large doses increases cerebral blood flow. The effect on flow is not known for a moderate dose, but were flow to increase, then increased cerebral oxygen delivery would be one mechanism of benefit from acetazolamide at high altitude. We utilized Doppler ultrasound in 8 volunteers to determine whether a usual acetazolamide dose (250 mg three times daily) would increase flow velocities in internal carotid and vertebral arteries. Acetazolamide during normoxia decreased pHa, PaCO2, and PETCO2, but baseline flow velocity remained unchanged. In 2 subjects without acetazolamide, voluntary hyperventilation decreased both PETCO2 and flow velocity. Both hypoxia and hypercapnia caused increases in arterial velocities. The increases were not altered by acetazolamide administration. In one subject, 1 g acetazolamide by acute i.v. injection induced an increase in flow velocity (40%) concomitant with a 5 mm Hg decrease in PETCO2, confirming prior reports using similar intravenous dose. In doses employed for prevention of acute mountain sickness, acetazolamide induced metabolic acidosis and may ha...Continue Reading

  • References16
  • Citations15


  • References16
  • Citations15


Mentioned in this Paper

Acetazolamide Sodium, (Sterile)
Blood Flow Velocity
Cerebrovascular Circulation
Altitude Sickness

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.