Oct 29, 2018

Vaccine-induced protection from homologous Tier 2 simian-human immunodeficiency virus challenge in nonhuman primates

BioRxiv : the Preprint Server for Biology
Matthias G PauthnerDennis R Burton

Abstract

Passive administration of HIV neutralizing antibodies (nAbs) can protect macaques from hard-to-neutralize (Tier 2) chimeric simian-human immunodeficiency virus (SHIV) challenge. However, conditions for nAb-mediated protection following vaccination have not been established. Here, we selected groups of 6 rhesus macaques with either high or low serum nAb titers from a total of 78 animals immunized with recombinant native-like (SOSIP) Env trimers from the BG505 HIV isolate. Repeat intrarectal challenge with homologous Tier 2 SHIVBG505 led to rapid infection in unimmunized and low-titer animals. In contrast, high-titer animals demonstrated protection that was gradually lost as nAb titers waned over weeks to months. From these results, we determined that an autologous serum ID50 nAb titer of ~1:500 was required to afford over 90% protection from medium-dose SHIV infection. We further identified autologous nAb titers, but not ADCC or T cell activity, as strong correlates of protection. These results provide proof-of-concept that Env protein-based vaccination strategies can protect against hard-to-neutralize SHIV challenge in rhesus macaques by inducing Tier 2 nAbs, provided appropriate neutralizing titers can be reached and maintained.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Neutralising Antibodies Analysis
T-Lymphocyte
Gene Products, env
Nanoparticle Albumin-Bound Rapamycin
Nonhuman primate
Vaccines
Simian-Human immunodeficiency virus
Chimera Organism
Antibodies, Neutralizing
Administration Procedure

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Antibody-Dependent Cell Cytotoxicity

Antibody-dependent cellular toxicity refers to the lysis of a target cell by a non-sensitized effector cell of the immune system as a result of antibodies binding to the target cell membrane and engaging the Fc receptors on the immune effector cells. Find the latest research on antibody-dependent cellular toxicity here.