Nov 22, 2017

Variance reduction for antithetic integral control of stochastic reaction networks

BioRxiv : the Preprint Server for Biology
Corentin BriatMustafa Khammash


The antithetic integral feedback motif recently introduced in Briat, Gupta & Khammash (Cell Systems, 2017) is known to ensure robust perfect adaptation for the mean dynamics of a given molecular species involved in a complex stochastic biomolecular reaction network. However, it was observed that it also leads to a higher variance in the controlled network than that obtained when using a constitutive (i.e. open-loop) control strategy. This was interpreted as the cost of the adaptation property and may be viewed as a performance deterioration for the overall controlled network. To decrease this variance and improve the performance, we propose to combine the antithetic integral feedback motif with a negative feedback strategy. Both theoretical and numerical results are obtained. The theoretical ones are based on a tailored moment closure method allowing one to obtain approximate expressions for the stationary variance for the controlled network and predict that the variance can indeed be decreased by increasing the strength of the negative feedback. Numerical results verify the accuracy of this approximation and show that the controlled species variance can indeed be decreased, sometimes below its constitutive level. Three molecul...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Reparative Closure
Protein Domain
Orientation (spatial)
Protein Expression

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.