Nov 7, 2018

Vec2SPARQL: integrating SPARQL queries and knowledge graph embeddings

BioRxiv : the Preprint Server for Biology
Maxat KulmanovRobert Hoehndorf

Abstract

Recent developments in machine learning have lead to a rise of large number of methods for extracting features from structured data. The features are represented as a vectors and may encode for some semantic aspects of data. They can be used in a machine learning models for different tasks or to compute similarities between the entities of the data. SPARQL is a query language for structured data originally developed for querying Resource Description Framework (RDF) data. It has been in use for over a decade as a standardized NoSQL query language. Many different tools have been developed to enable data sharing with SPARQL. For example, SPARQL endpoints make your data interoperable and available to the world. SPARQL queries can be executed across multiple endpoints. We have developed a Vec2SPARQL, which is a general framework for integrating structured data and their vector space representations. Vec2SPARQL allows jointly querying vector functions such as computing similarities (cosine, correlations) or classifications with machine learning models within a single SPARQL query. We demonstrate applications of our approach for biomedical and clinical use cases. Our source code is freely available at https://github.com/bio-ontology-r...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Classification
Question (Inquiry)
Anatomical Space Structure
Genetic Vectors
Learning
Gene Ontology Project
Cloning Vectors
Biomedicine
Didemnin B
World

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Bioinformatics in Biomedicine (Preprints)

Bioinformatics in biomedicine incorporates computer science, biology, chemistry, medicine, mathematics and statistics. Discover the latest preprints on bioinformatics in biomedicine here.