Mar 20, 2020

Ventral hippocampal input to the prelimbic cortex dissociates the context from the cue association in trace fear memory

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
Robert C TwiningMarieke R Gilmartin

Abstract

The prefrontal cortex, through its high degree of interconnectivity with cortical and subcortical brain areas, mediates cognitive and emotional processes in support of adaptive behaviors. This includes the formation of fear memories when the anticipation of threat demands learning about temporal or contextual cues, as in trace fear conditioning. In this variant of fear learning, the association of a cue and shock across an empty trace interval of several seconds requires sustained cue-elicited firing in the prelimbic cortex (PL). However, it is unknown how and when distinct PL afferents contribute to different associative components of memory. Among the prominent inputs to PL, the hippocampus shares with PL a role in both working memory and contextual processing. Here we tested the necessity of direct hippocampal input to the PL for the acquisition of trace cued fear memory and the simultaneously acquired contextual fear association. Optogenetic silencing of ventral hippocampal (VH) terminals in the PL of adult male Long-Evans rats selectively during paired trials revealed that direct communication between the VH and PL during training is necessary for contextual fear memory, but not for trace cued fear acquisition. The pattern...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Alginate-polylysine-alginate
Fear Response
Emotions
Memory, Short-Term
Cerebral Cortex
Cognition
Memory Impairment
Conditioning, Classical
Fear (Mental Process)
Clinical Trials

Related Feeds

Brain Circuits in Emotional Learning

The neuronal circuits within the cortico-limbic brain regions form networks that mediate emotional behavior. Areas specific to emotional learning include the basal amygdala and sublenticular extended amygdala region along with a supplemental motor area. Discover the latest research on brain circuits in emotional learning here.