Nov 8, 2018

Viable and efficient electroporation-based genetic manipulation of unstimulated human T cells

BioRxiv : the Preprint Server for Biology
Pinar AksoyJeffrey Hammerbacher


Electroporation is the most feasible non-viral material delivery system for manipulating human T cells given its time- and cost-effectiveness. However, efficient delivery requires electroporation settings to be optimized for different devices, cellular states, and materials to be delivered. Here, we used electroporation to either induce exogenous gene expression in human primary T cells by plasmids or in vitro transcribed (IVT) mRNA and also target endogenous genes by Cas9 ribonucleoproteins (RNPs). We characterized the electroporation conditions both for activated and unstimulated human T cells. Although naive cells are non-dividing and therefore their genetic manipulation is harder compared to activated T cells, we developed the technical ability to manipulate both naive and memory cells within the unstimulated T cell population by IVT mRNA and Cas9 RNP electroporation. Here, we outline the best practices for achieving highly-efficient genetic manipulation in primary T cells without causing significant cytotoxicity to the cells. Because there is increasing evidence for "less-differentiated" T cells to have better anti-tumor activity for immunotherapy, manipulating naive T cells with high efficiency is also of high importance ...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Genetic Manipulation
Cell Nucleus
Gene Expression
Cell Proliferation

About this Paper

Related Feeds

Cancer Biology: Molecular Imaging

Molecular imaging enables noninvasive imaging of key molecules that are crucial to tumor biology. Discover the latest research in molecular imaging in cancer biology in this feed.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.