Jan 26, 2010

Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition

FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology
Melissa G MendezRobert D Goldman

Abstract

Vimentin is used widely as a marker of the epithelial to mesenchymal transitions (EMTs) that take place during embryogenesis and metastasis, yet the functional implications of the expression of this type III intermediate filament (IF) protein are poorly understood. Using form factor analysis and quantitative Western blotting of normal, metastatic, and vimentin-null cell lines, we show that the level of expression of vimentin IFs (VIFs) correlates with mesenchymal cell shape and motile behavior. The reorganization of VIFs caused by expressing a dominant-negative mutant or by silencing vimentin with shRNA (neither of which alter microtubule or microfilament assembly) causes mesenchymal cells to adopt epithelial shapes. Following the microinjection of vimentin or transfection with vimentin cDNA, epithelial cells rapidly adopt mesenchymal shapes coincident with VIF assembly. These shape transitions are accompanied by a loss of desmosomal contacts, an increase in cell motility, and a significant increase in focal adhesion dynamics. Our results demonstrate that VIFs play a predominant role in the changes in shape, adhesion, and motility that occur during the EMT.

  • References56
  • Citations246
  • References56
  • Citations246

Mentioned in this Paper

Dominant-Negative Mutation
VIM gene
Transfection
Cell Motility
Western Blotting
Squamous Transitional Epithelial Cell Count
Motility
Focal Adhesions
Embryonic Development
Etiology

Related Feeds

Adhesion Molecules in Health and Disease

Cell adhesion molecules are a subset of cell adhesion proteins located on the cell surface involved in binding with other cells or with the extracellular matrix in the process called cell adhesion. In essence, cell adhesion molecules help cells stick to each other and to their surroundings. Cell adhesion is a crucial component in maintaining tissue structure and function. Discover the latest research on adhesion molecule and their role in health and disease here.

© 2020 Meta ULC. All rights reserved