PMID: 43706Sep 1, 1979

Viral aggregation: buffer effects in the aggregation of poliovirus and reovirus at low and high pH

Applied and Environmental Microbiology
R Floyd, D G Sharp

Abstract

The effects of the buffer employed in maintaining a given pH value were tested on the aggregation of two viruses, poliovirus and reovirus. Poliovirus was found to aggregate at pH values of 6 and below, but not at pH 7 or above, except in borate buffer. Reovirus aggregated at pH 4 and below, but was found to aggregate only in acetate or tris(hydroxymethyl)aminomethane-citrate buffers at pH 5. Other buffers tested for aggregation of reovirus at pH 5 (succinate, citrate, and phosphate-citrate) induced little aggregation. No significant aggregation was found for reovirus at pH 6 and above. For both viruses, the most effective aggregation was induced by buffers having a substantial monovalently charged anionic component, such as acetate at pH 5 and 6 or citrate at pH 3. Cationic buffers at low pH, such as glycine, were generally weaker in aggregating ability than anionic buffers at the same pH. These results, when correlated with the isoelectric point of the viruses (poliovirus at pH 8.2; reovirus at pH 3.9) indicated that both viruses aggregated strongly when their overall charge was positive, but only under certain circumstances when their overall charge was negative. Although reovirus aggregated massively at its isoelectric point...Continue Reading

References

Oct 24, 2007·Journal of Applied Microbiology·J LangletChristophe Gantzer
Feb 5, 2005·Applied and Environmental Microbiology·Benoît Gassilloud, Christophe Gantzer
Feb 26, 2016·Food and Environmental Virology·Amy M KahlerVincent R Hill
Nov 7, 2015·PloS One·Nikolai NikitinOlga Karpova
Oct 23, 2012·Applied and Environmental Microbiology·Jennifer L CashdollarG Shay Fout
Nov 10, 2009·Journal of Applied Microbiology·F PintoP McGeechan

Related Concepts

Buffers
Aggregation
Succinates
Tromethamine
Citrate Measurement
Phosphate Measurement
Glycine
Human poliovirus 3
Succinate
Glycine (Plant)

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.