PMID: 44447Nov 1, 1979

Viral aggregation: mixed suspensions of poliovirus and reovirus

Applied and Environmental Microbiology
R Floyd


The aggregation of mixtures of two dissimilar viruses, poliovirus I (Mahoney) and reovirus III (Dearing), was followed by electron microscopy under conditions known to induce either aggregation or dispersion of each virus separately. Neither virus aggregated at pH 7 in an appropriate buffer, and no mixed aggregates were formed. Under conditions of lowered ionic strength (by dilution into distilled water) poliovirus became aggregated, whereas reovirus did not, and again no mixed aggregates were formed. At pH 6, however, poliovirus again aggregated and, although reovirus did not, it attached to poliovirus aggregates. Thus, some inducement toward aggregation was necessary to cause formation of mixed aggregates. This inducement probably took the form of a reduction of the ionic double layer surrounding the particles, which is known to occur at low pH. At pH 5 and below both viruses aggregated severely, and large mixed aggregates were formed. These mixed aggregates could be broken up by neutralization of the suspension, although small aggregates of poliovirus remained. Reovirus showed a marked tendency to attach to large clumps of poliovirus, but the reverse tendency was not observed. The results indicate that mixed aggregates may b...Continue Reading


Jul 24, 2020·Journal of Biophotonics·Aziz BerchtikouTsuneyuki Ozaki
Jun 20, 2016·Food and Environmental Virology·Walter Q Betancourt, Charles P Gerba
May 23, 2017·Nature Microbiology·José M CuevasRafael Sanjuán
Jun 30, 2019·Virus Evolution·Rafael Sanjuán, María-Isabel Thoulouze

Related Concepts

Acetic Acids
Hydrogen-Ion Concentration
Mammalian orthoreovirus 3
Environmental Sludge
Water Microbiology

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.