Viral biogeography revealed by signatures in Sulfolobus islandicus genomes

Environmental Microbiology
Nicole L Held, Rachel J Whitaker


Viruses are a driving force of microbial evolution. Despite their importance, the evolutionary dynamics that shape diversity in viral populations are not well understood. One of the primary factors that define viral population structure is coevolution with microbial hosts. Experimental models predict that the trajectory of coevolution will be determined by the relative migration rates of viruses and their hosts; however, there are no natural microbial systems in which both have been examined. The biogeographic distribution of viruses that infect Sulfolobus islandicus is investigated using genome comparisons among four newly identified, integrated, Sulfolobus spindle-shaped viruses and previously sequenced viral strains. Core gene sequences show a biogeographic distribution where viral genomes are specifically associated with each local population. In addition, signatures of host-virus interactions recorded in the sequence-specific CRISPR (clustered regularly interspaced short palindromic repeats) system show that hosts have interacted with viral communities that are more closely related to local viral strains than to foreign ones. Together, both proviral and CRISPR sequences show a clear biogeographic structure for Sulfolobus v...Continue Reading


May 14, 2009·Proceedings of the National Academy of Sciences of the United States of America·Michael L RenoRachel J Whitaker
Mar 6, 2012·Proceedings of the National Academy of Sciences of the United States of America·Marcia F MarstonJennifer B H Martiny
Jun 16, 2012·Proceedings of the National Academy of Sciences of the United States of America·Lu FanTorsten Thomas
Mar 8, 2012·Nucleic Acids Research·Ana SenciloElina Roine
Mar 20, 2010·Proceedings. Biological Sciences·Pedro F Vale, Tom J Little
Feb 2, 2010·Applied and Environmental Microbiology·Valery A SorokinIrena I Artamonova
Dec 1, 2011·Microbiology and Molecular Biology Reviews : MMBR·Mart KrupovicDennis H Bamford
Mar 1, 2012·PLoS Biology·Hinsby Cadillo-QuirozRachel J Whitaker
Jun 22, 2012·PLoS Genetics·Mina RhoYuzhen Ye
Oct 12, 2010·PloS One·Nicole L HeldRachel J Whitaker
Jun 28, 2011·PloS One·Mike L Dyall-SmithDieter Oesterhelt
Mar 13, 2013·Viruses·Britt Koskella, Sean Meaden
Sep 20, 2012·F1000 Biology Reports·Joshua S Weitz, Steven W Wilhelm
Mar 16, 2011·Yi chuan = Hereditas·Tie-Min Li, Bo Du
Mar 22, 2014·Trends in Microbiology·Maija K PietiläDennis H Bamford
Jul 16, 2013·Archaea : an International Microbiological Journal·Joanne B EmersonJillian F Banfield
May 29, 2013·Extremophiles : Life Under Extreme Conditions·Marleen van WolferenSonja-Verena Albers
Mar 19, 2013·Annual Review of Biochemistry·Rotem SorekBlake Wiedenheft
Feb 25, 2014·Extremophiles : Life Under Extreme Conditions·Patrizia ContursiQunxin She
May 23, 2014·Annual Review of Microbiology·John J Dennehy
Jun 10, 2010·Annual Review of Microbiology·Hélène DeveauSylvain Moineau
Nov 9, 2011·Annual Review of Genetics·Devaki BhayaRodolphe Barrangou
Jan 10, 2012·Annual Review of Food Science and Technology·Rodolphe Barrangou, Philippe Horvath
Mar 29, 2011·Cold Spring Harbor Perspectives in Biology·Matthijs M JoreJohn van der Oost
Apr 24, 2013·Molecular Biology and Evolution·Thomas W SchoenfeldBrian P Hedlund
Oct 11, 2013·Journal of Virology·James R LaidlerKenneth M Stedman
Apr 5, 2011·The American Naturalist·Britt KoskellaAngus Buckling
Dec 19, 2012·Trends in Microbiology·Joshua S WeitzMichael E Hochberg
Sep 25, 2010·Research in Microbiology·Shiraz A Shah, Roger A Garrett
Jan 17, 2016·Annual Review of Food Science and Technology·Rodolphe Barrangou, Edward G Dudley
Oct 9, 2009·Current Opinion in Microbiology·Rebecca Vega Thurber
Aug 4, 2009·Trends in Biochemical Sciences·John van der OostStan J J Brouns
Oct 13, 2012·Environmental Microbiology·Christine L SunJillian F Banfield


Jan 1, 1981·Journal of Molecular Evolution·J Felsenstein
Sep 1, 1997·Nucleic Acids Research·S F AltschulD J Lipman
Jan 27, 1999·Bioinformatics·D Posada, K A Crandall
Aug 31, 2000·Journal of Molecular Biology·C NotredameJ Heringa
Mar 28, 2002·Nucleic Acids Research·A J EnrightC A Ouzounis
Dec 6, 2002·Nature·Angus Buckling, Paul B Rainey
Jun 26, 2003·Nucleic Acids Research·Rasmus Wernersson, Anders Gorm Pedersen
Jul 26, 2003·Science·Rachel J WhitakerJohn W Taylor
Aug 13, 2003·Bioinformatics·Fredrik Ronquist, John P Huelsenbeck
Jan 30, 2004·Journal of Virology·Blake WiedenheftMark J Young
Jul 15, 2004·FEMS Microbiology Letters·Mya BreitbartForest Rohwer
Oct 16, 2004·Nature·Samantha E FordeBrendan J M Bohannan
Jan 11, 2005·Applied and Environmental Microbiology·Cindy M Short, Curtis A Suttle
Mar 29, 2005·Journal of Molecular Evolution·Francisco J M MojicaElena Soria
Sep 3, 2005·Nature Reviews. Microbiology·Laura S FrostAriane Toussaint
Dec 21, 2005·Proceedings of the National Academy of Sciences of the United States of America·Olin K SilanderLin Chao
Mar 25, 2006·Science·Maureen L ColemanSallie W Chisholm
Mar 30, 2006·Evolution; International Journal of Organic Evolution·Scott L Nuismer
Aug 1, 2006·Archaea : an International Microbiological Journal·Reidun K LillestølKim Brügger
Jan 12, 2007·BMC Evolutionary Biology·Andrew D MorganAngus Buckling
Mar 24, 2007·Science·Rodolphe BarrangouPhilippe Horvath
Nov 21, 2007·Proceedings of the National Academy of Sciences of the United States of America·Jamie C SnyderMark J Young
Dec 11, 2007·Journal of Bacteriology·Philippe HorvathRodolphe Barrangou
Dec 11, 2007·Journal of Bacteriology·Hélène DeveauSylvain Moineau
Dec 14, 2007·Genome Research·Victor KuninPhilip Hugenholtz
Dec 25, 2007·Nature Reviews. Microbiology·Rotem SorekPhilip Hugenholtz
Jan 22, 2008·The American Naturalist·Jason D Hoeksema, Samantha E Forde
May 24, 2008·Science·Anders F Andersson, Jillian F Banfield

Related Concepts

Genome, Archaeal
Human Geography
Host-Pathogen Interactions

Related Feeds

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.