Nov 23, 2006

Vital organ blood flow with the impedance threshold device

Critical Care Medicine
Tom Aufderheide, Keith G Lurie


The purpose of this study is to review cardiopulmonary resuscitation hemodynamics and vital organ blood flow in animal models with the use of the impedance threshold device (ITD) and to correlate these findings with the results of human clinical trials. Animal studies have demonstrated near normalization of cerebral blood flow and an increase between 50% and 100% in cardiac blood flow with use of the ITD. Coincident coronary perfusion pressure is significantly increased with the ITD. Results of human clinical trials generally reflect the data seen in animal models, with near normal blood pressure during active compression-decompression cardiopulmonary resuscitation and the ITD, near doubling of blood pressure with standard cardiopulmonary resuscitation plus the ITD, and significantly increased short-term survival rates. Improved vital organ perfusion with ITD use during cardiopulmonary resuscitation is an important advance in resuscitation. Incorporation of the ITD into protocols that improve other aspects of the care of patients during cardiac arrest and after successful resuscitation should result in further benefit from the ITD.

  • References47
  • Citations12


  • References47
  • Citations12


Mentioned in this Paper

Coronary Circulation
Cerebral Blood Flow Imaging
Electric Impedance
Diastolic Blood Pressure
Basic Cardiac Life Support
Blood Flow
Cerebrovascular Circulation
Blood Pressure

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.