Nov 10, 2014

Where's the noise? Key features of neuronal variability and inference emerge from self-organized learning

BioRxiv : the Preprint Server for Biology
Christoph HartmannJochen Triesch


Trial-to-trial variability and spontaneous activity of cortical recordings have been suggested to reflect intrinsic noise. This view is currently challenged by mounting evidence for structure in these phenomena: Trial-to-trial variability decreases following stimulus onset and can be predicted by previous spontaneous activity. This spontaneous activity is similar in magnitude and structure to evoked activity and can predict decisions. All of the observed neuronal properties described above can be accounted for, at an abstract computational level, by the sampling-hypothesis, according to which response variability reflects stimulus uncertainty. However, a mechanistic explanation at the level of neural circuit dynamics is still missing. In this study, we demonstrate that all of these phenomena can be accounted for by a noise-free self-organizing recurrent neural network model (SORN). It combines spike-timing dependent plasticity (STDP) and homeostatic mechanisms in a deterministic network of excitatory and inhibitory McCulloch-Pitts neurons. The network self-organizes to spatio-temporally varying input sequences. We find that the key properties of neural variability mentioned above develop in this model as the network learns to p...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Biological Neural Networks
Neuronal Plasticity
Neural Stem Cells
Neural Network Simulation
Structure of Cortex of Kidney
Clinical Trials

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.