Apr 18, 2020

First evidence of virus-like particles in the bacterial symbionts of Bryozoa

BioRxiv : the Preprint Server for Biology
A. E. VishnyakovA. N. Octrovsky

Abstract

Bacteriophage communities associated with humans and vertebrate animals have been extensively studied, but the data on phages living in invertebrates remain scarce. In fact, they have never been reported for most animal phyla. Our ultrastructural study showed for the first time a variety of virus-like particles (VLPs) and supposed virus-related structures inside symbiotic bacteria in two marine species from the phylum Bryozoa, the cheilostomes Bugula neritina and Paralicornia sinuosa. We also documented the effect of VLPs on bacterial hosts: we explain different bacterial 'ultrastructural types' detected in bryozoan tissues as stages in the gradual destruction of prokaryotic cells caused by viral multiplication during the lytic cycle. We speculate that viruses destroying bacteria regulate symbiont numbers in the bryozoan hosts, a phenomenon known in some insects. We develop two hypotheses explaining exo- and endogenous circulation of the viruses during the life-cycle of B. neritina. Finally, we compare unusual 'sea-urchin'-like structures found in the collapsed bacteria in P. sinuosa with so-called metamorphosis associated complexes (MACs) known to trigger larval metamorphosis in a polychaete worm.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Hydrogen sulfite
DNA Methylation [PE]
Size
Patterns
RMRP
Body Structure
Protein Methylation
Genome
Mandibular Right Second Primary Molar
Cytosine

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

© 2020 Meta ULC. All rights reserved