Apr 4, 2020

Detecting genetic variation and base modifications together in the same single molecules of DNA and RNA at base pair resolution using a magnetic tweezer platform.

BioRxiv : the Preprint Server for Biology
Emilia S. GraciaGordon Hamilton


Accurate decoding of nucleic acid variation is important to understand the complexity and regulation of genome function. Here we introduce a single-molecule platform based on magnetic tweezer (MT) technology that can identify and map the positions of sequence variation and multiple base modifications together in the same single molecules of DNA or RNA at single base resolution. Using synthetic templates, we demonstrate that our method can distinguish the most common epigenetic marks on DNA and RNA with high sensitivity, specificity and precision. We also developed a highly specific CRISPR-Cas enrichment strategy to target genomic regions in native DNA without amplification. We then used this method to enrich native DNA from E. coli and characterized the differential levels of adenine and cytosine base modifications together in molecules of up to 5 kb in length. Finally, we enriched the 5-prime UTR of FMR1 from cells derived from a Fragile X carrier and precisely measured the repeat expansion length and methylation status of each molecule. These results demonstrate that our platform can detect a variety of genetic, epigenetic and base modification changes concomitantly within the same single molecules.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Internal parasite
Antisocial protein, Drosophila
Manipulating Function

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.