Mar 31, 2019

Xenotransplantation of Human PSC-derived Microglia Creates a Chimeric Mouse Brain Model that Recapitulates Features of Adult Human Microglia

BioRxiv : the Preprint Server for Biology
Ranjie XuPeng Jiang


Microglia, the brain-resident macrophages, exhibit highly dynamic functions in neurodevelopment and neurodegeneration. Human microglia possess unique features as compared to mouse microglia, but our understanding of human microglial functions is largely limited by an inability to obtain human microglia under homeostatic states. We developed a human pluripotent stem cell (hPSC)-based microglial chimeric mouse brain model by transplanting hPSC-derived primitive macrophage precursors into neonatal mouse brains. The engrafted human microglia widely disperse in the brain and replace mouse microglia in corpus callosum at 6 months post-transplantation. Single-cell RNA-sequencing of the microglial chimeric mouse brains reveals that xenografted hPSC-derived microglia largely retain human microglial identity, as they exhibit signature gene expression patterns consistent with physiological human microglia and recapitulate heterogeneity of adult human microglia. Importantly, the engrafted hPSC-derived microglia exhibit dynamic response to cuprizone-induced demyelination and species-specific transcriptomic differences in the expression of neurological disease-risk genes in microglia. This model will serve as a novel tool to study the role o...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Pluripotent Stem Cells
Sequence Determinations, RNA
Nerve Degeneration
Gene Expression
CNS - Brain (Mmhcc)

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.