Apr 14, 2020

rcs5-mediated spot blotch resistance in barley is conferred by wall-associated kinases that resist pathogen manipulation

BioRxiv : the Preprint Server for Biology
G. AmeenR S Brueggeman

Abstract

Plant biotrophic pathogen disease resistances rely on immunity receptor-mediated programmed cell death (PCD) responses, but specialized necrotrophic/hemi-biotrophic pathogens hijack these mechanisms to colonize the resulting dead tissue in their necrotrophic phase. Thus, immunity receptors can become necrotrophic pathogen dominant susceptibility targets but resistance mechanisms that resist necrotroph manipulation are recessive resistance genes. The barley rcs5 QTL imparts recessive resistance against the disease spot blotch caused by the hemi-biotrophic fungal pathogen Bipolaris sorokiniana. The rcs5 genetic interval was delimited to ~0.23 cM, representing an ~234 kb genomic region containing four wall-associated kinase (WAK) genes, designated HvWak2, Sbs1, Sbs2 (susceptibility to Bipolaris sorokiniana 1&2), and HvWak5. Post-transcriptional gene silencing of Sbs1&2 in susceptible barley cultivars resulted in resistance showing dominant susceptibility function. Allele analysis of Sbs1&2 from resistant and susceptible barley cultivars identified sequence polymorphisms associated with phenotypes in their primary coding sequence and promoter regions, suggesting differential transcriptional regulation may contribute to susceptibili...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Exosomes
Biological Markers
Nuclease Sensitive Element Binding Protein 1
Solocyte
Tissue Membrane
Synapsin I
YBX1
Membrane
Drug Labeling
MIR223

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.

Cell Migration in Cancer and Metastasis

Migration of cancer cells into surrounding tissue and the vasculature is an initial step in tumor metastasis. Discover the latest research on cell migration in cancer and metastasis here.